RegaDB: Community-driven data management and analysis for infectious diseases

Pieter Libin1,2,*, Gertjan Beheydt1, Koen Deforche2, Stijn Imbrechts1, Fossie Ferreira1, Kristel Van Laethem1,3, Kristof Theys1, Ana Patricia Carvalho4, Joana Cavaco-Silva5, Giuseppe Lapadula6, Carlo Torti6, Matthias Assel7, Stefan Wesner7, Joke Snoeck1, Jean Ruelle8, Annelies De Bel9, Patrick Lacor9, Paul De Munter3, Eric Van Wijngaerden3, Maurizio Zazzi10, Rolf Kaiser11, Ahidjo Ayouba12, Martine Peeters12, Tulio de Oliveira13, Luiz Carlos Junior Alcantara14, Zehava Grossman15, Peter Sloat16, Dan Otelea17, Simona Paraschiv17, Charles Boucher18, Ricardo Camacho4,5 and Anne-Mieke Vandamme1,5,*

1Rega Institute for Medical Research, KU Leuven, Leuven, Belgium; 2mybiodata, biomedical IT solutions, Rotselaar, Belgium; 3University Hospitals Leuven, Leuven, Belgium; 4Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; 5Centro de Malária e Outras Doenças Tropicalis, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal; 6University of Brescia, Brescia, Italy; 7High Performance Computing Center of University Stuttgart, Stuttgart, Germany; 8Université Catholique de Louvain, Brussels, Belgium; 9Universitair Ziekenhuis Brussel, Brussels, Belgium; 10Department of Biotechnology, University of Siena, Siena, Italy; 11Institute of Virology, University of Cologne, Cologne, Germany; 12Institut de recherche pour le développement, Montpellier, France; 13Africa Centre for Health and Population Studies, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; 14Gonçalo Moniz Research Center/FIOCRUZ, Salvador-Ba, Brazil; 15Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 16University of Amsterdam, Amsterdam, the Netherlands; 17Institutul National de Boli Infectioase "Prof. Dr. Matei Bals", Bucharest, Romania; 18Department of Virology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands

ABSTRACT

Summary: RegaDB is a free and open source data management and analysis environment for infectious diseases. RegaDB allows clinicians to store, manage and analyze patient data, including viral genetic sequences. Moreover, RegaDB provides researchers with a mechanism to collect data in a uniform format and offers them a canvas to make newly developed bioinformatics tools available to clinicians and virologists through a user friendly interface.

Availability and implementation: Source code, binaries and documentation are available on http://regaweb.med.kuleuven.be/software/regadb/ RegaDB is written in the Java programming language, using a web-service oriented architecture.

Contact: pieter.libin@rega.kuleuven.be

Supplementary information: Supplementary material demonstrating the functionalities of the system is available at Bioinformatics online.

1 INTRODUCTION

Advances in infectious diseases research require efficient collaboration and exchange of clinical and virological data. Researchers need access to large amounts of data to test hypotheses or extract valuable information through data mining (Sloot et al., 2008, 2009). For this purpose, RegaDB was developed as a free and open source data management and analysis environment for infectious diseases (Libin et al., 2007). RegaDB runs on Windows, Linux or Mac OS X. The system can be installed within a hospital or institute so that the data stays within the clinical environment. RegaDB follows the idea of an integrated environment for bioinformatics analysis, such as the Genetic Data Environment (de Oliveira et al. 2003), ViroLab (Assel et al., 2009) and Geneious (Drummond et al, 2011). The difference is that RegaDB uses a relational database, and can be locally or remotely accessed. This allows RegaDB to be used for clinical management and/or research in one locality or for long-term data-sharing collaborations between different institutes.
2 DATABASE STRUCTURE AND TOOLS

RegaDB's database enforces the data abstraction paradigm (Figure 1). This approach ensures flexibility, since the database can be conveniently extended as needed without upgrading its schema in most of the cases (Imbrechts et al., 2009). All abstract data entities are connected to a central patient entity, including attributes, tests, events, therapies and viral isolates. Attributes annotate a patient with information, which is typically of a clinical or epidemiological nature; e.g. the gender or transmission risk group. RegaDB implements tests as values that are obtained at a given moment in time i.e. there is only one date associated with it. The results can be in vivo or in vitro measurements, appointments, as well as computational results obtained from a web service. General tests are used to store data extracted from patient samples, e.g. cell counts and viral loads. Tests can also be linked to viral isolates, e.g. typing and subtyping results, to drugs, e.g. therapeutic drug monitoring, or to a combination of an isolate and a drug, e.g. phenotypic and genotypic resistance interpretations. Events cover a specific time interval in the patient's history, i.e. have a start and end date, e.g. AIDS defining illnesses or pregnancy. The default list of attributes, tests and events available in the system can be extended via the user interface. In this way, RegaDB can be tailored to the user's needs or research interests. Attributes, tests and events are annotated with a data type (numbers, strings, nominal values, etc.), which allows the user interface and data access layer to maintain data integrity. The therapy entity allows users to store the medication history of a patient. A single therapy consists of a start date, a stop date and a combination of drugs, i.e. a regimen, that the users can select from a list of both generic and commercial drug names. When the therapy has a stop date, the clinician can indicate a reason for ending or switching the treatment, e.g. resistance, side effects, or adherence issues.

![Figure 1: An overview of RegaDB’s database entities and functionalities.](http://bioinformatics.oxfordjournals.org/)

A viral isolate contains one or more nucleotide sequences, allowing multiple sequences extracted from one viral genome to be grouped together. Once an isolate is added to RegaDB, the corresponding pathogen is determined by invoking a web service that implements a BLAST search procedure (Altschul et al., 1990). When RegaDB supports the pathogen, the appropriate reference sequence is loaded and used to perform a codon alignment with frame-shift detection and correction. The alignment procedure finds the protein reading frames encoded by the sequences that make up the isolate. This information, together with all detected point mutations, insertions and deletions is stored in the database. The alignment web service implements the Needleman-Wunsch algorithm in C++ (Needleman and Wunsch, 1975) to analyse large sequences efficiently. Depending on the pathogen determination returned by the web service, the viral isolate is directed to a typing web service (Alcantara et al., 2009; de Oliveira et al., 2005) and/or resistance interpretation web service (Liu and Shafer, 2006). Table 1 shows detailed information on reference sequences and bioinformatics tools available for the supported pathogens. RegaDB supports the use of bioinformatics tools published on the web as web services. All data can be viewed and edited through a web-based interface. Key parameters of a patient’s clinical history are visualized in a patient chart as a time-line annotated with viral loads, CD4 counts, regimens and viral isolate time points. RegaDB can export patient details into a report document by replacing variables in a predefined user-designed RTF template.

Several tools are already available or are being developed, some of which by the users. Drug resistance interpretation can be performed according to several algorithms. For HIV, various versions of the Stanford algorithms (HIVdb, Liu and Shafer, 2006), the Rega algorithms (Van Laethem et al, 2002) and the ANRS algorithms (Meynard et al, 2002) are implemented. For each algorithm a cumulative overview is available, whereby resistance detected in a patient is taken forward to the last sample. Evolution of a virus isolate is tabulated as amino acid changes compared to the previous isolate from the same patient. Another tool allows plotting a phylogenetic tree constructed from a set of sequences with a pre-defined similarity to a query sequence. To ensure the quality of the sequence database, a tool was developed that can be used to flag potential contaminations, errors in sampling or data entry, super infection, or transmission chains, by detecting unusual intra- or inter-patient evolutionary distances.

Attributes are synchronized with a central repository to ensure compatibility between different RegaDB instances. The central repository contains a collection of standardized data fields and corresponding values such as demographic information (country of origin, transmission risk group, etc.), test results (viral load, cell count, etc.) and drug names (both generic and commercial). In addition, this repository also provides access to the latest versions of drug resistance algorithms. Compatibility functionalities allow the system to be updated, with minimal effort, as new content becomes available.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Reference sequence (Genbank accession)</th>
<th>Genotyping</th>
<th>ASI Resistance interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1</td>
<td>HXB2 (K03455)</td>
<td>Rega HIV Subtyping Tool</td>
<td>REGA, HIVDB, ANRS</td>
</tr>
<tr>
<td>HIV-2a</td>
<td>ROD (M15390)</td>
<td>Rega HIV Subtyping Tool</td>
<td>REGA</td>
</tr>
<tr>
<td>HIV-2b</td>
<td>EHO (U27200)</td>
<td>Rega HIV Subtyping Tool</td>
<td>REGA</td>
</tr>
<tr>
<td>HCV</td>
<td>H77 (AF009606)</td>
<td>Oxford HCV Subtyping Tool</td>
<td>-</td>
</tr>
<tr>
<td>HTLV</td>
<td>HTLV-1 (J02029)</td>
<td>Oxford HCV Subtyping Tool</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Pathogens currently supported by RegaDB, annotated with the reference sequence used for alignments and with the subtyping and resistance interpretation bioinformatics tools applied to new isolates of the respective pathogen.

3 OPPORTUNITIES FOR RESEARCHERS

When the development of RegaDB started, several custom made databases were available that allowed users to enter ambiguous representations of data, for example different representations for the same medical compound. However, to facilitate efficient data
exchange and to make the execution of aggregate queries possible, it is important that data is available in a structured format. By providing support for explicit data types and enforcing these data types through the user interface, RegaDB circumvents many difficulties that might complicate the exchange of data.

RegaDB allows data to be exported in XML format from local data sources (hospitals, institutes) and these exports can be combined in a research database.

Data from other databases can be imported via a generic import tool. RegaDB also provides a programming interface, which can be used to develop custom import programs to support more complicated data sources. A procedure to import data encoded in the HiCDEP (hicdep.org) format directly into RegaDB is currently under development.

A research database will generally be accessed via the Internet; therefore authentication is an important security aspect. RegaDB supports password-based authentication by default. The authentication module abstraction allows for a straightforward implementation of alternative authentication back-ends (Openid, Kerberos, etc.), which makes it possible for RegaDB to connect to existing user management systems. The application will only allow registered users to access the system. Once a user is granted access to the system, this user is only able to access patient information that belongs to a dataset connected to the user’s profile. The owner of the dataset can configure the access of users to this dataset, and revoke the access after a certain analysis or assignment is finished. Researchers can query RegaDB using the visual query tool, which allows users to define complex queries guided by a user interface. Query definitions can be saved and re-run every time an update of the data becomes available. Work is in progress to support the use of predefined SQL based queries via the user interface. Query results can be exported as a CSV and/or FASTA file. It is possible to setup an analysis workflow by configuring a query to execute a python post processing script. If the script generates statistical data in a graphical format, this is visualized in the query user interface after the query has been executed.

When researchers make their tools available as web services, they can be easily integrated in RegaDB, lowering the threshold for clinicians and virologists to use such tools.

RegaDB has been used in several collaborations including the Virolab EC project (virolab.org). Data from several European hospitals was stored in one RegaDB instance resulting in a combined dataset of more than 8000 sequences. During the last phase of the project we were able to combine our efforts with another EC project, EUResist (euresist.org), resulting in a combined database of more than 55000 sequences.

Another example of the utility of RegaDB is the collaborative database used within the Southern African Treatment and Resistance Network (SATuRN). This network has 24 member institutions working in Southern Africa, the region at the epicenter of the HIV epidemic. Currently there are more than ten institutions using the SATuRN RegaDB for patient data management, data curation and research. Under SATuRN, more than 7000 genotypes with treatment and monitoring data has been collected. Using the built-in customized report and query functionality, data of specific instances that can only be accessed by a restricted user base. Some of these instances are accessible on the Internet; others are only accessible from within the institute’s intranet.

The current version of the software is already used for storing genetic data of HIV-1, HIV-2, HTLV (Araujo et al. 2012) and HCV isolates and related patient and clinical information.

ACKNOWLEDGEMENTS

The authors would like to thank the AIDS Reference Laboratory of Leuven that receives support from the Belgian Ministry of Social Affairs through a fund within the Health Insurance System, the “SPIRALES” program from IRD and the mybiodata company.

Funding: This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO) Flanders [grants to K.T. and J.S., G.0611.09, 1.5.236.11N, G.A029.11]; the Research Fund of the KU Leuven [OT/08/047, PDMK/10/204 to K.T.]; the Institute for the Promotion of Innovation through Sciences and Technology in Flanders (IWT) [PhD grant to G.B.]; the Interuniversity Attraction Poles Programme, Belgian State, Belgian Science Policy [IAP-VI P6/41]; the Virolab project [EU IST STREP Project 027446]. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under the project “Collaborative HIV and Anti-HIV Drug Resistance Network (CHAIN)” - grant agreement n° 223131.

Conflict of interest: none declared.

REFERENCES

Figure 1