HIV drug resistance levels in adults failing first-line antiretroviral therapy in an urban and a rural setting in South Africa

TM Rossouw,1 M Nieuwoudt,2 J Manasa,3,4 G Malherbe,1 RJ Lessells,4,5 S Pillay,4 S Danaviah,4 P Mahasha,1 G van Dyk1 and T de Oliveira4,6,7

1Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa, 2South African Department of Science and Technology/National Research Foundation Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa, 3Department of Infectious Diseases, Stanford University, Stanford, CA, USA, 4Africa Centre Population Health, University of KwaZulu-Natal, South Africa, 5Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK, 6Research Department of Infection, University College London, London, UK and 7School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

Objectives
Urban and rural HIV treatment programmes face different challenges in the long-term management of patients. There are few studies comparing drug resistance profiles in patients accessing treatment through these programmes. The aim of this study was to perform such a comparison.

Methods
HIV drug resistance data and associated treatment and monitoring information for adult patients failing first-line therapy in an urban and a rural programme were collected. Data were curated and managed in SATuRN RegaDB before statistical analysis using Microsoft Excel 2013 and STATA Ver14, in which clinical parameters, resistance profiles and predicted treatment responses were compared.

Results
Data for 595 patients were analysed: 492 patients from a rural setting and 103 patients from an urban setting. The urban group had lower CD4 counts at treatment initiation than the rural group (98 vs. 126 cells/µL, respectively; P = 0.05), had more viral load measurements performed per year (median 3 vs. 1.4, respectively; P < 0.01) and were more likely to have no drug resistance mutations detected (35.9% vs. 11.2%, respectively; P < 0.01). Patients in the rural group were more likely to have been on first-line treatment for a longer period, to have failed for longer, and to have thymidine analogue mutations. Notwithstanding these differences, the two groups had comparable predicted responses to the standard second-line regimen, based on the genotypic susceptibility score. Mutations accumulated in a sigmoidal fashion over failure duration.

Conclusions
The frequency and patterns of drug resistance, as well the intensity of virological monitoring, in adults with first-line therapy failure differed between the urban and rural sites. Despite these differences, based on the genotypic susceptibility scores, the majority of patients across the two sites would be expected to respond well to the standard second-line regimen.

Keywords: drug resistance, HIV-1, rural, urban.

Accepted 11 February 2016

Introduction
Highly active antiretroviral therapy (HAART) significantly decreases morbidity and mortality associated with HIV-1 infection, transforming it from an inevitably fatal illness into a manageable, chronic condition [1–4]. Significant
increases in patient lifespan and quality of life are a result of reduced HIV-1 viraemia with a corresponding partial reconstitution of the immune system. The development of HIV-associated drug resistance (HIVDR) in the presence of suboptimal drug levels, however, poses a threat to the long-term success of the HIV treatment programme as it limits treatment options, increases costs and leads to a reservoir of resistant virus that can be transmitted to other individuals [5].

Similar treatment responses to HAART have been reported across HIV-1 subtypes [6]. Most data on drug resistance, however, concern subtype B, the predominant subtype found in the developed world. In contrast, there is still relatively little information on subtype C, which accounts for the majority of infections world-wide [7] and is predominantly found in sub-Saharan Africa. More research is needed, especially as it has been reported that subtype C might have a higher propensity for the development of mutations conferring resistance to common first-line drugs [8–10]. For instance, it has been shown that subtype C contains a valine codon 106 polymorphism (GTG) that facilitates a V106M mutation (GTG < →ATG) after selection with efavirenz (EFV), which confers high-level cross-resistance to the class of nonnucleoside reverse transcriptase inhibitors (NNRTIs) [11]. In addition, subtype C has a different template nucleotide sequence around codon 65 that causes transcription errors in this region, with the subsequent rapid development of resistance to tenofovir (TDF) [12,13].

Even a relatively small increase in HIVDR in subtype C might be significant, considering the magnitude of the treatment programme in countries such as South Africa, where approximately 2.5 million people were accessing HAART by the end of 2013 [14]. Up to 85% of patients failing first-line HAART have evidence of at least one drug resistance-associated mutation [15]. Overall, based on data from 12 studies in eight countries, between 3.7% and 49% of individuals on first-line NNRTI-based HAART were virologically failing as defined by at least one HIV-1 RNA [viral load (VL)] measurement of > 1000 HIV-1 RNA copies/mL plasma after at least 6 months of HAART [13].

Although South Africa has a few, large, highly populated urban centres, much of the population (38%) is rural [17]. Nevertheless, most published studies on ART outcomes and HIVDR in South Africa have come from urban treatment cohorts or from provinces with primarily urban populations [10,15,18–26]. Rural HIV treatment programmes face different, and possibly greater, challenges such as: (1) longer travel distances to access health care facilities coupled with inadequate access to transportation; (2) limited access to virological monitoring; (3) increased stigma; and (4) significant human resource challenges [16,27–30]. Human resource constraints may impact on the ability to provide sufficient adherence counselling, and the latter has repeatedly been shown to account for the majority of treatment failures [3,29].

Very few studies have investigated whether treatment outcomes, and specifically HIVDR, are different in rural compared with urban areas. The aim of this study was therefore to describe and compare select clinical and HIVDR profiles of patients failing first-line HAART across two sites in South Africa – one urban and one rural. The urban site was a district hospital in central Pretoria (Tshwane District Hospital) and the rural site was located in northern KwaZulu-Natal (Hlabisa subdistrict). We also examined the accumulation of resistance mutations as a function of the duration of treatment failure.

Methods

The terms “urban” and “rural” were defined according to Urban Influence codes as described by Larson & Fleishman (2003) [31]. The urban group is from a large metropolitan statistical area of more than 1 million people, Pretoria in the Gauteng province. The rural group is from the Hlabisa subdistrict (1430 km²) of the KwaZulu-Natal province, a geographical setting that is very heterogeneous in terms of population density, with 2–3000 people/km². The subdistrict is served by one district hospital and 17 primary health care clinics [13].

All patients were ≥ 18 years old, had started HAART after 2004 as part of the South African national HIV treatment plan and were treated according to the National Department of Health HIV guidelines (2004 and 2010) during this time. All patients had failed a first-line NNRTI-based HAART regimen as defined by at least one HIV-1 RNA [viral load (VL)] measurement of > 1000 HIV-1 RNA copies/mL plasma after at least 6 months of HAART. The duration of virological failure was estimated as the time from the date of the first VL > 1000 copies/mL to the date of genotyping. If there was a VL < 50 copies/mL between the above dates, the duration was then measured from the next VL > 1000 copies/mL. If all VL values were > 1000 copies/mL then the duration was taken as the time from baseline to the date of genotyping. Immunological failure was defined according to World Health Organization (WHO) criteria as: (1) a decline of CD4 T-cell count to lower than or equal to the baseline value; (2) a persistent CD4 T-cell count of < 100 cell/ µL, or (3) a decline of ≥ 50% from the on-treatment peak value.

Genotypic drug resistance testing (DRT) became available to the urban group in 2008 as part of a drug resistance surveillance project. Samples were collected beginning of 2008 and the end of 2012. This
was a doctor-based programme and patients were referred for DRT after two measurements of VL > 1000 copies/mL when interventions to improve adherence had failed to result in virological suppression and if the clinician was satisfied that all other obvious causes of treatment failure had been excluded. Clinicians sent three ethylenediaminetetraacetic acid (EDTA) tubes of blood to the Department of Immunology at the University of Pretoria together with the patient’s history consisting of all available CD4 T-cell counts, VLs and HAART history.

DRT started in the rural group in December 2010 as part of the implementation of genotypic resistance testing in 17 primary health care clinics in the area [13,32] and samples were collected between the end of 2010 and the beginning of 2013. Details of the rural programme have been published previously [33]. In summary, routine HIV treatment, care and monitoring were delivered largely by nurses and HIV counsellors at each primary health care clinic. People with complications of treatment or evidence of treatment failure were referred to the medical officer who made weekly visits to each clinic. Patients were referred for DRT after one VL > 1000 copies/mL. Clinicians or nurses collected one EDTA tube of blood, which was sent to the Africa Centre virology laboratory, together with a detailed clinical history.

For HIV drug resistance genotyping, the rural group used the open access SATuRN Life Technology HIV drug resistance testing [34]. Briefly, the method involved generating cDNA using the Superscript III kit (Invitrogen Corporation, Carlsbad, CA, USA) and a gene-specific primer. This was followed by a nested polymerase chain reaction (PCR) using Platinum taq polymerase (Invitrogen Corporation) to amplify a 1315-bp polymerase (pol) fragment. The purified amplicons were sequenced using four bidirection primers covering the full protease gene and the first 300 codons of the reverse transcriptase (RT) gene. Sequencing electrophoresis was performed on a 3130 XL genetic analyzer (Applied Biosystems Inc., Foster City, Carlsbad, CA, USA). This method was developed in collaboration with Life Technologies (Applied Biosystems Inc.) as an affordable method to be implemented in resource-limited settings [35]. It has been validated against the commercial and Food and Drug Administration (FDA)-approved Viroseq genotyping method (Celera Diagnostics, Alameda, CA, USA) [36]. The SATuRN Life Technologies method has been validated with a panel of proficiency testing samples obtained from the French National Agencies for Research on AIDS and Viral Hepatitis (ANRS). The SATuRN Life Technologies and ViroSeq methods were 100% concordant in identifying all clinically important drug resistance-associated mutations [34]. In addition, the laboratory participates in an HIV-1 drug resistance genotyping proficiency testing programme from Quality Control for Molecular Diagnostics (QCMD, Glasgow, Scotland). Genotyping for the urban group was performed using the commercial and FDA-approved TruGene HIV-1 genotyping kit (Siemens Healthcare Diagnostics, Tarrytown, NY, USA) as per the manufacturer’s protocol. Sequences were assembled and manually edited using the DNA WORKBENCH 5.7.1 software (CLC bio, Aarhus, Denmark).

The two groups followed the same protocol for sequence quality assessment and analysis, which has also been previously described [34]. Briefly, the quality of the sequences was assessed using the quality analysis tool and the HIVDB programme on the Stanford HIV database [37]. HIV subtyping was performed using the Rega HIV-1 subtyping tool version 3.0 [38]. In addition, phylogetic analysis was used to assess possible contamination. All sequence data were anonymously managed in a relational database, the SATuRN RegaDB [39].

Genotypic susceptibility scores (GSSs) were calculated for each antiretroviral agent using the Stanford HIVS0 algorithm version 6.0.5 [40] and a total score was then calculated for the standard second-line regimens. This was done to assess the impact of observed drug resistance mutations on the predicted effectiveness of standard second-line regimens. Total GSS for the standard second-line regimen was calculated depending on the patient’s treatment history: for participants on stavudine (d4T) or zidovudine (ZDV) at the time of genotyping, GSS was calculated for a regimen of TDF, lamivudine (3TC) and lopinavir/ritonavir (LPV/r), while for those on TDF at the time of genotyping, GSS was calculated for a regimen of ZDV, 3TC and LPV/r. These standard second-line regimens were consistent with the recommendations in the 2013 South African national HIV treatment guidelines [41]. For the purposes of this analysis, a compromised second-line regimen was defined as GSS < 2. Data from the two groups were combined to assess the accumulation of resistance mutations for the various drug classes as a function of treatment failure.

The urban and rural group data were exported from SATuRN RegaDB into Excel 2013 files. Pivot tables with IF/AND and VLOOKUP functions were used to calculate variable categories while the SOLVER function, using the minimization of the square of the residuals, was used to fit specified nonlinear functions to the accumulated mutations data. Excel data were also exported to STATA version 14 (Statacorp, College Station, TX, USA), using which descriptive statistics were calculated, and to STATISTIX version 9, using which P-values were calculated for differences between variables. For count data, two-proportion tests were used and for continuous data Wilcoxon
rank sum tests were used. Alpha (α) was set on the 95th percentile and a *P*-value ≤ 0.05 was considered significant.

The study was approved by the research ethics committees of the Faculty of Health Sciences at the University of Pretoria (46/2011) and the University of KwaZulu Natal (BF052/10). No personal participant information was entered in the database and all participants were allocated a unique identifying code. Results of the DRT were made available to the treating doctors and nurses in real time and support was given regarding selection of next regimens and access to newer medication, as needed.

Results

Demographic and clinical characteristics of the two patient groups are presented in Table 1. There was a large difference in the size of the groups: 492 patients in the rural group vs. 103 in the urban group. Patient proportions were not significantly different in terms of sex and age. In the urban group, the median CD4 T-cell count prior to ART initiation was significantly lower than that of the rural group (98 vs. 126 cells/μL, respectively; *P* = 0.05); however, the range was large in both groups.

At the time of genotyping, the differences in CD4 count and the proportion of patients with immunological failure in the two groups were not significant, but the median CD4 T-cell count was still very low (in the 130–140 cells/μL range) and over 41% of patients had immunological failure in both groups. Both groups reported VL values > 4.0 log_{10} copies/mL; however, the urban group had a higher median value than the rural group (4.18 vs. 4.08 log_{10} copies/mL, respectively; *P* = 0.03). The urban group had more intensive monitoring, as evidenced by the significantly larger median number of VL tests per year (three for the urban group vs. 1.4 for the rural group; *P* < 0.01). Consequently, the majority of patients in the urban group had < 6 months of virological treatment failure, while the majority of patients from the rural group had been failing for more than 24 months.

Table 2 shows the comparison of the HAART regimens, the number of patients with resistance mutations and GSSs in the two groups. Consistent with the duration of virological failure, the duration of treatment in the two institutions was significantly different. Initial ART regimens were essentially comparable, although a larger proportion of rural patients had been started on regimens consisting of d4T/3TC/EFV and TDF/3TC/EFV, while a larger proportion of urban patients had been started on ZDV-based regimens. Similarly, at genotyping, a significantly larger proportion of rural patients were still on d4T-containing regimens, while more urban patients were on ZDV-based regimens. Urban patients were more likely to have changed regimen, either in terms of a nucleos(t)
Table 2: Comparison of antiretroviral treatment regimens, genotype susceptibility scores and number of resistance mutations

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Africa centre</th>
<th>Pretoria</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of ART ([months])</td>
<td>49.2</td>
<td>25.9</td>
<td>< 0.01</td>
</tr>
<tr>
<td>[median (IQR)]</td>
<td>[36.7–61.0]</td>
<td>(14.2–41.5)</td>
<td></td>
</tr>
<tr>
<td>Initial ART regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ddI/3TC/EFV</td>
<td>218 (44.3)</td>
<td>19 (18.6)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>d4T/3TC/3TC/3TC/3TC/3TC/3TC/3TC/3TC/EFV</td>
<td>109 (22.2)</td>
<td>10 (9.8)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>TDF/3TC/EFV</td>
<td>99 (20.1)</td>
<td>12 (11.8)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>ddl/3TC/3TC/3TC/3TC/3TC/3TC/3TC/3TC/EFV</td>
<td>22 (4.5)</td>
<td>7 (6.9)</td>
<td>0.44</td>
</tr>
<tr>
<td>TDF/3TC/NVP</td>
<td>12 (2.4)</td>
<td>16 (15.7)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>ZDV/3TC/3TC/3TC/3TC/3TC/3TC/3TC/3TC/EFV</td>
<td>12 (2.4)</td>
<td>12 (7.8)</td>
<td>> 0.01</td>
</tr>
<tr>
<td>Total</td>
<td>492 (100)</td>
<td>102 (100)</td>
<td></td>
</tr>
<tr>
<td>Patients with any substitutions'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with NRTI substitutions</td>
<td>105 (21.3)</td>
<td>57 (56.4)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Patients with NNRTI substitutions</td>
<td>65 (13.2)</td>
<td>18 (17.8)</td>
<td>0.31</td>
</tr>
<tr>
<td>Patients with both NRTI and NNRTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substitutions</td>
<td>19 (4.0)</td>
<td>13 (11.3)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Time from ART (months) [median (IQR)]</td>
<td>20 (10.8–33.2)</td>
<td>13.0 (6.0–13.0)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Number of regimen changes (median [min–max])</td>
<td>2 (1–4)</td>
<td>3 (1–6)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>GSS for current regimen at genotyping [median (IQR)]</td>
<td>1.0 (0.5–1.0)</td>
<td>1.0 (1.0–2.0)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Predicted second-line GSS (median [IQR])</td>
<td>< 2</td>
<td>409 (83.3)</td>
<td>53 (63.9)</td>
</tr>
<tr>
<td></td>
<td>≥ 2</td>
<td>82 (16.7)</td>
<td>36 (31.6)</td>
</tr>
<tr>
<td>Any RT mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2</td>
<td>58 (12.0)</td>
<td>14 (16.9)</td>
<td>0.27</td>
</tr>
<tr>
<td>≥ 2</td>
<td>433 (88.0)</td>
<td>69 (83.1)</td>
<td>0.27</td>
</tr>
<tr>
<td>No mutations (wild type)</td>
<td>55 (11.2)</td>
<td>37 (35.9)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>NNRTI mutations</td>
<td>418 (84.4)</td>
<td>57 (55.3)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>NRTI mutations</td>
<td>414 (83.6)</td>
<td>57 (55.3)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Values are n (%) unless otherwise stated. ART, antiretroviral therapy; IQR, interquartile range; d4T, stavudine; 3TC, lamivudine; EFV, efavirenz; NVP, nevirapine; TDF, tenofovir; ZDV, zidovudine; ddI, didanosine; GSS, genotype susceptibility score; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleos(t)ide reverse transcriptase inhibitor; RT, reverse transcriptase; TAM, thymidine analogue mutation; PI, protease inhibitor.

*All substitutions were for reasons of toxicity/intolerability and all occurred before drug resistance testing. P-values were either the Wilcoxon rank sum test or two-proportion tests.

At genotyping, all patients, except one in the urban group who was infected with subtype B, were found to have HIV-1 subtype C infection. A significantly larger proportion of urban patients than rural patients had no HIVDR mutations detected, indicating wild-type virus (35.9% vs. 11.2%, respectively; P < 0.01). In addition, a larger proportion of urban patients had fewer than two RT mutations detected, while rural patients were more likely to have between two and six mutations. The proportion with more than six mutations was, however, comparable in the two groups (14.6% in the urban group vs. 18.7% in the rural group; P = 0.54). Rural patients were more likely than urban patients to have thymidine analogue mutations (TAMs) (30.9% vs. 14.6%, respectively; P < 0.01) as well as multiple (three or more) TAMs (12.6% vs. 3.9%, respectively; P = 0.02). The exact resistance mutations are depicted in Figure 1. The most common mutations in both groups were M184V, K103NS and V106AM. Interestingly, the GSSs for second-line regimens were essentially identical, with 88% of the rural group and 83.1% of the urban group having scores ≥ 2.

By combining the results of the two groups, we also assessed whether the duration of treatment failure was associated with the number of drug resistance mutations. Table 3 demonstrates a pattern of an increased number of NRTI mutations in patients failing for between 6 and 12 months compared with those failing for < 6 months (mean 1.4 vs. 1.1, respectively), and a further increase in patients failing for between 13 and 24 months (mean 1.8), after which time there was a slight decline (mean 1.6 in patients with failure for > 24 months). NNRTI mutations accumulated slightly more slowly than NRTI mutations in patients failing for < 6 months or between

© 2016 British HIV Association
6 and 12 months (mean 1 vs. 1.1, respectively), while those failing for > 1 and > 2 years had means of 1.3 and 1.2, respectively. TAMs accumulated mostly after 1 year of failure (0.38 for failure < 6 months; 0.45 for failure 6–12 months; 0.85 for failure 13–24 months; and 0.81 for failure > 24 months). Figure 2 demonstrates a sigmoidal accumulation of mutations over failure duration. Using the minimization of the square of residuals, the following function provided a near ideal fit to the data for total mutations:

\[Y(\% \text{ of mutations}) = \frac{100}{1 + Ae^{-Bt}} \]

where \(A = 12, B = 0.125 \) and \(t = \) the failure duration in months.

Given that the sigmoidal is also the integral of a logistic function, mutation accumulation would appear to follow a binary additive pattern over time. Analysis of the data did not reveal any relationship between the VL at the time of genotyping and the number of mutations (data not shown).

Discussion

To our knowledge, this is the first study to compare HIVDR profiles in patients failing first-line NNRTI-based HAART in an urban and a rural setting in South Africa. Urban patients were more aggressively managed than their rural counterparts: they had more therapy switches within a shorter duration of therapy, had more VL tests per annum and had been failing for a shorter time before being referred for DRT. The HIVDR results reflect these different approaches to monitoring and treatment, although causation cannot be claimed; there were significantly more urban patients with no resistance mutations and rural patients had higher percentages of NNRTI and NRTI mutations. The proportion of patients with no mutations detected on genotyping despite repeat VL testing and an adherence intervention in the urban group was higher than previously reported in the literature (36% vs. 19–30%, respectively) [19,20,23] and may be attributable to more intensive monitoring, coupled with the absence...
Table 3 All patient data grouped by categorical failure duration

<table>
<thead>
<tr>
<th>Failure category (months)</th>
<th>Predicted GSS to standard</th>
<th>2nd line NNRTI regimen</th>
<th>NRTI substitution</th>
<th>NNRTI substitution</th>
<th>Both substitutions</th>
<th>BL VL (mean ± SD)</th>
<th>Genotype VL (mean ± SD)</th>
<th>NNRTI [mean ± SD sum (%)]</th>
<th>NRTI [mean ± SD sum (%)]</th>
<th>PI [mean ± SD sum (%)]</th>
<th>TAM [mean ± SD sum (%)]</th>
<th>All [mean ± SD sum (%)]</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6</td>
<td>58 (10.1)</td>
<td>9 (1.6)</td>
<td>54 (9.1)</td>
<td>71 (12.0)</td>
<td>12 (2.1)</td>
<td>3.891 ± 1.122</td>
<td>3.708 ± 1.232</td>
<td>1 ± 0.78</td>
<td>1.1 ± 1.1</td>
<td>0</td>
<td>0.38 ± 0.94</td>
<td>2.5 ± 2.3</td>
<td>86</td>
</tr>
<tr>
<td>vs. 19 (3.3)</td>
<td>vs. 68 (11.9)</td>
<td>vs. 31 (5.2)</td>
<td>vs. 14 (2.4)</td>
<td>vs. 8 (1.6)</td>
<td>vs. 8 (1.6)</td>
<td>90 (41.5)</td>
<td>94 (43.3)</td>
<td>0</td>
<td>0</td>
<td>3 (15.2)</td>
<td>21.7 (10.5)</td>
<td>48 (10.5)</td>
<td></td>
</tr>
<tr>
<td>6–12</td>
<td>80 (14.0)</td>
<td>6 (1.1)</td>
<td>83 (14.0)</td>
<td>96 (16.2)</td>
<td>21 (17.4)</td>
<td>4.165 ± 1.108</td>
<td>3.797 ± 1.33</td>
<td>1.1 ± 0.85</td>
<td>1.4 ± 1.3</td>
<td>0.02 ± 0.19</td>
<td>0.45 ± 0.91</td>
<td>3.2 ± 2.5</td>
<td>110</td>
</tr>
<tr>
<td>vs. 25 (4.4)</td>
<td>vs. 99 (17.3)</td>
<td>vs. 26 (4.4)</td>
<td>vs. 13 (2.2)</td>
<td>vs. 8 (1.6)</td>
<td>vs. 8 (1.6)</td>
<td>126 (37.8)</td>
<td>156 (46.9)</td>
<td>2 (0.6)</td>
<td>49 (14.7)</td>
<td>33 (16.1)</td>
<td>76 (37.0)</td>
<td>25 (10.5)</td>
<td></td>
</tr>
<tr>
<td>13–24</td>
<td>163 (28.4)</td>
<td>23 (4.0)</td>
<td>140 (23.6)</td>
<td>170 (28.7)</td>
<td>24 (19.8)</td>
<td>4.086 ± 1.068</td>
<td>3.818 ± 1.139</td>
<td>1.3 ± 0.73</td>
<td>1.8 ± 1.4</td>
<td>0.04 ± 0.31</td>
<td>0.85 ± 1.4</td>
<td>3.9 ± 2.8</td>
<td>194</td>
</tr>
<tr>
<td>vs. 25 (4.4)</td>
<td>vs. 165 (28.8)</td>
<td>vs. 54 (9.1)</td>
<td>vs. 24 (4.1)</td>
<td>vs. 10 (1.3)</td>
<td>vs. 10 (1.3)</td>
<td>245 (32.1)</td>
<td>347 (45.5)</td>
<td>7 (0.9)</td>
<td>164 (21.5)</td>
<td>76 (37.0)</td>
<td>25 (10.5)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>> 24</td>
<td>161 (28.1)</td>
<td>34 (5.9)</td>
<td>154 (26.0)</td>
<td>173 (29.2)</td>
<td>32 (26.5)</td>
<td>4.437 ± 0.953</td>
<td>4.05 ± 1.114</td>
<td>1.2 ± 0.77</td>
<td>1.6 ± 1.4</td>
<td>0.09 ± 0.31</td>
<td>0.81 ± 0.31</td>
<td>3.7 ± 2.8</td>
<td>205</td>
</tr>
<tr>
<td>vs. 42 (7.3)</td>
<td>vs. 169 (29.5)</td>
<td>vs. 5 (0.8)</td>
<td>vs. 32 (5.4)</td>
<td>vs. 6 (1.0)</td>
<td>vs. 6 (1.0)</td>
<td>247 (32.9)</td>
<td>331 (44.1)</td>
<td>6 (0.8)</td>
<td>1.366 (22.1)</td>
<td>75 (36.4)</td>
<td>25 (10.5)</td>
<td>86 (10.5)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>462 (80.6)</td>
<td>72 (12.6)</td>
<td>431 (72.7)</td>
<td>510 (86.0)</td>
<td>89 (73.6)</td>
<td>4.202 ± 1.058</td>
<td>3.878 ± 1.186</td>
<td>1.2 ± 0.78</td>
<td>1.6 ± 1.4</td>
<td>0.03 ± 0.26</td>
<td>0.69 ± 1.2</td>
<td>3.5 ± 2.8</td>
<td>595</td>
</tr>
<tr>
<td>vs. 111 (19.4)</td>
<td>vs. 501 (87.4)</td>
<td>vs. 162 (27.3)</td>
<td>vs. 83 (14.0)</td>
<td>vs. 32 (26.5)</td>
<td>vs. 32 (26.5)</td>
<td>708 (34.3)</td>
<td>928 (45.0)</td>
<td>15 (0.7)</td>
<td>412 (20.0)</td>
<td>2063 (100)</td>
<td>2063 (100)</td>
<td>595</td>
<td></td>
</tr>
</tbody>
</table>

Mutation percentages total towards the right.
GSS, genotypic susceptibility score; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; TAM, thymidine analogue mutation; SD, standard deviation; vs., versus.

It is interesting to note that, despite more significant resistance to DDFT and less so to TDF [41] giving the public health practitioner with this accumulation, financial might be associated with this accumulation, and might be predicted GSSs for second-line therapy. This is in keeping with the effectiveness of second-line protease inhibitor-based therapy in suppressing VL, at least in the urban and rural environments, the overall patterns of HIV drug resistance in urban and rural settings.

Although the individual percentages were different in the urban and rural environments, the overall pattern of mutation of drug resistance formation was similar. The underlying trend with the accumulation of similar mutations with increasing duration of failure in both environments, with the rural group having accumulated more mutations as a result of the longer time spent with actively replicating virus while on HAART. This is consistent with other studies that have observed that prolonged HAART failure leads to the accumulation of drug resistance [42,43].

It is interesting to note that, despite more significant resistance to TDF and less so to DDFT [41] giving the public health practitioner with this accumulation, and might be predicted GSSs for second-line therapy. This is in keeping with the effectiveness of second-line protease inhibitor-based therapy in suppressing VL, at least in the urban and rural environments, the overall pattern of HIV drug resistance in urban and rural settings.

Although the individual percentages were different in the urban and rural environments, the overall pattern of mutation of drug resistance formation was similar. The underlying trend with the accumulation of similar mutations with increasing duration of failure in both environments, with the rural group having accumulated more mutations as a result of the longer time spent with actively replicating virus while on HAART. This is consistent with other studies that have observed that prolonged HAART failure leads to the accumulation of drug resistance [42,43].

It is interesting to note that, despite more significant resistance to TDF and less so to DDFT [41] giving the public health practitioner with this accumulation, and might be predicted GSSs for second-line therapy. This is in keeping with the effectiveness of second-line protease inhibitor-based therapy in suppressing VL, at least in the urban and rural environments, the overall pattern of HIV drug resistance in urban and rural settings.

Although the individual percentages were different in the urban and rural environments, the overall pattern of mutation of drug resistance formation was similar. The underlying trend with the accumulation of similar mutations with increasing duration of failure in both environments, with the rural group having accumulated more mutations as a result of the longer time spent with actively replicating virus while on HAART. This is consistent with other studies that have observed that prolonged HAART failure leads to the accumulation of drug resistance [42,43].

It is interesting to note that, despite more significant resistance to TDF and less so to DDFT [41] giving the public health practitioner with this accumulation, and might be predicted GSSs for second-line therapy. This is in keeping with the effectiveness of second-line protease inhibitor-based therapy in suppressing VL, at least in the urban and rural environments, the overall pattern of HIV drug resistance in urban and rural settings.

Although the individual percentages were different in the urban and rural environments, the overall pattern of mutation of drug resistance formation was similar. The underlying trend with the accumulation of similar mutations with increasing duration of failure in both environments, with the rural group having accumulated more mutations as a result of the longer time spent with actively replicating virus while on HAART. This is consistent with other studies that have observed that prolonged HAART failure leads to the accumulation of drug resistance [42,43].
Variables that might have impacted on the development of HIVDR, such as adherence and use of traditional medication or alcohol, were not routinely collected and could thus not be compared between the groups. There was also no active follow-up of patients in the research studies after change to second-line regimens and so we do not have data on actual treatment responses on second-line ART. There were some methodological differences in terms of referral pathways and eligibility criteria at the two sites, but these have been taken into account. In addition, DRT methodology differed between the urban and rural centres, but this is not expected to make a difference to the DRT results [48]. Despite these limitations, this study presents one of the largest data sets of HIVDR results in sub-Saharan Africa and addresses an important, yet understudied, area of HIV research.

In conclusion, this study showed that urban and rural patients received significantly different HIV care, with urban patients being more aggressively managed. This translated into fewer patients with evidence of HIVDR and, specifically, severe HIVDR at the time of genotyping and supports the notion that increased duration on failing HAART increases drug resistance. Despite these differences, the expected response to second-line ART remained comparable between the groups. These findings have important implications for management of patients in large treatment programmes where financial constraints may limit the feasibility of intensive patient monitoring. It seems that a balance can be obtained between limited virological monitoring on the one hand and prevention of severe, treatment-limiting HIVDR on the other. Future studies might investigate the association between the rate and type of mutations accumulated and the cumulative (integrated) VL, that is, the “viral fitness”, during the treatment failure duration.

Acknowledgements
The authors would like to thank the patients in the two groups as well as the clinics, nurses and counsellors who
identified patients and referred them for the study. This work was supported by the European Union (SANTE 2007 147–790). The Hlabisa HIV Treatment and Care Programme has received support through the United States Agency for International Development (USAID) and the President’s Emergency Plan (PEPFAR) under the terms of Award No. 674–A-00-08-00001-00. Data analysis and curing were also supported by a Flagship grant from the Medical Research Council (MRC) of the Republic of South Africa (MRC- RFA-UFSF-01-2013/UKZN HIVEPI). The Africa Centre is funded by Wellcome Trust ((082384/Z/07/Z). T de Oliveira is also funded by a Royal Society Newton Advanced Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

7 Abraha A, Nankya IL, Gibson R et al. CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009; 83: 5592–5605.
22 Hoffmann CJ, Charalambous S, Sim J et al. Viremia, resuppression, and time to resistance in human immunodeficiency virus (HIV) subtype C during first-line

